THE ENTROPY OF CHEBYSHEV POLYNOMIALS

BY

R. L. ADLER AND M. H. McANDREW

1. **Introduction.** The purpose of this work is to compute the topological entropy of the vth Chebyshev polynomial $T_{\nu}(x)$ considered as a map of [-1,1] onto itself. The notation and basic definitions relevant to the concept of topological entropy are contained in [1] and are reviewed briefly below.

For an open cover $\mathfrak A$ of a compact space $X, N(\mathfrak A)$ denotes the minimum cardinality of all sub-covers of $\mathfrak A$. $H(\mathfrak A) = \log N(\mathfrak A)$ is called the *entropy* of $\mathfrak A$. A cover $\mathfrak B$ is said to *refine* a cover $\mathfrak A$ if every set of $\mathfrak B$ is a subset of some set of $\mathfrak A$; we use the notation $\mathfrak A - \mathfrak B$. We define the *join* of two covers $\mathfrak A, \mathfrak B$ to be the cover $\mathfrak A \vee \mathfrak B = \{A \cap B; A \in \mathfrak A, B \in \mathfrak B\}$. For a continuous map ϕ of X into itself we define $h(\phi, \mathfrak A)$, the *entropy of* ϕ *with respect to* $\mathfrak A$ to be

$$\lim_{n\to\infty} H(\mathfrak{A}\vee\phi^{-1}\mathfrak{A}\vee\cdots\vee\phi^{-n+1}\mathfrak{A})/n;$$

in [1] this limit is shown to exist. Finally $h(\phi)$, the entropy of ϕ , is defined to be $\sup h(\phi, \mathfrak{A})$ where the supremum is taken over all open covers \mathfrak{A} of X. In the sequel we use the following properties.

- (1) \prec is transitive.
- (2) $\mathfrak{A} \prec \mathfrak{A}'$ and $\mathfrak{B} \prec \mathfrak{B}' \Rightarrow \mathfrak{A} \vee \mathfrak{B} \prec \mathfrak{A}' \vee \mathfrak{B}'$.
- (3) $\mathfrak{A} \prec \mathfrak{B} \Rightarrow N(\mathfrak{A}) \leq N(\mathfrak{B})$.
- (4) $\mathfrak{A} \prec \mathfrak{B} \Rightarrow \phi^{-1} \mathfrak{A} \prec \phi^{-1} \mathfrak{B}$.
- $(5) \quad \phi^{-1}(\mathfrak{A}\vee\mathfrak{B}) = \phi^{-1}\mathfrak{A}\vee\phi^{-1}\mathfrak{B}.$
- (6) Let \mathfrak{A}_n be a refining sequence; i.e. a sequence of open covers such that $\mathfrak{A}_n \prec \mathfrak{A}_{n+1}$ and for every open cover \mathfrak{B} there is some \mathfrak{A}_n with $\mathfrak{B} \prec \mathfrak{A}_n$. Then $h(\phi) = \lim_{n \to \infty} h(\phi, \mathfrak{A}_n)$. These properties are proved in [1].

2. Preliminary lemmas.

LEMMA 1. Let X be a compact topological space and μ a Borel measure on X. For an open cover $\mathfrak B$ of X, let $g(\mathfrak B,x)=1/\sup \mu(B)$, the supremum being taken over all B with $x\in B$ and $B\in \mathfrak B$. Then $\int_X g(\mathfrak B,x)d\mu \leq N(\mathfrak B)$.

Proof. $g(\mathfrak{B},x)$ is measurable since $\{x:g(\mathfrak{B},x)<\lambda\}=\bigcup_{\mu(B_i)>1/\lambda}B_i$, an open set.

Let $\mathfrak{B}' = \{B_1, B_2, \dots, B_{N(\mathfrak{V})}\}$ be a subcover of minimal cardinality. For $x \in X$ let B(x) be that B_i of least index such that $x \in B_i$. Then $\{x : B(x) = B_i\}$ is just

 $B_i \cap \overline{B}_1 \cap \overline{B}_2 \cap \cdots \cap \overline{B}_{i-1}$ and is measurable. If $\mu(B_i) = 0$ then $\mu\{x : B(x) = B_i\} = 0$ and

$$\int_{\{x:B(x)=B_i\}} g(\mathfrak{B},x)d\mu = 0.$$

If $\mu(B_i) \neq 0$ then

$$\int_{\{x:B(x)=B_1\}} g(\mathfrak{B},x) d\mu \leq \int_{B_1} \frac{1}{\mu(B_1)} d\mu = 1.$$

Since $X = \bigcup_{i=1}^{N(\mathfrak{Y})} \{x : B(x) = B_i\}$ the result of the lemma now follows.

LEMMA 2. Let $v \ge 2$. Then there is a function $\lambda(r)$ defined for integral $r \ge 2$ with the following properties:

- (2.1) (i) $\lim_{r\to\infty} \lambda(r) = v$.
 - (ii) If $r \ge 2$ and $\{I_n; n \ge 0\}$ is a sequence of real numbers satisfying

$$(2.2) I_{n+1} > \nu I_n - (\nu - 1) I_{n-\nu+1}$$

for $1 \le s \le r$ and $s \le n+1$, then

(2.3)
$$\liminf_{n \to \infty} I_n^{1/n} \ge \lambda(r).$$

Proof. We shall show that the unique positive zero of

(2.4)
$$f_r(x) = x^{r-1} - (v-1)(x^{r-2} + x^{r-3} + \dots + 1)$$

has the properties required for $\lambda(r)$. We note that for r > 2, $\lambda(r)$ is the positive zero other than 1 of $g_r(x) = (x-1) f_r(x) = x^r - vx^{r-1} + v - 1$. Now $g_r(v) = v - 1 > 0$, and $g_r(v - v^{2-r}) = v - 1 - v(1 - v^{1-r})^{r-1}$. Clearly $g_r(v - v^{2-r}) \to -1$ as $r \to \infty$. Hence for r sufficiently large, $v - v^{2-r} < \lambda(r) < v$. This verifies (2.1).

To verify the second property of $\lambda(r)$ let $r \ge 2$ and let I_n be a sequence satisfying (2.2). Let $J_n = I_{n+1} - I_n$ $(n \ge 0)$. Then from (2.2) with s = 1, $J_n > 0$. Further

(2.5)
$$J_n > (v-1)(J_{n-1} + J_{n-2} + \dots + J_{n-s+1})$$

for $2 \le s \le r$ and $s \le n+1$. We shall show that for $n \ge 0$,

$$(2.6) J_n \ge J_0 \lambda(r)^{n-r}.$$

Since $f_r(1) = 1 - (v-1)(r-1) \le 0$ and $f_r(+\infty) = +\infty$, $\lambda(r) \ge 1$. Hence (2.6) is true for n = 0. From (2.5) with $s = 2, 3, \dots, r-1$ and n = s-1 it follows that $J_n > J_0$ for $1 \le n \le r-2$ and, a fortiori, (2.6) is true. The remaining cases for n follow from (2.5) with s = r by induction, since $\lambda(r)$ is a zero of (2.4). Relation (2.3) now follows from (2.6) since $I_n = I_1 + \sum_{m=1}^{n-1} J_m$.

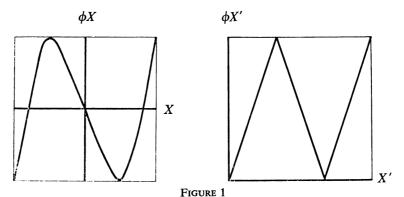
3. Main result. Let X be the interval [-1, 1] with its usual topology and let ϕ be the map $x \to T_{\nu}(x)$ where T_{ν} is the ν th Chebyshev polynomial; i.e. $T_{\nu}(\cos \theta) = \cos \nu \theta$.

THEOREM. $h(\phi) = \log v$.

Proof. Let $X' = [0, \pi]$ and let σ be the homeomorphism of X onto X' defined by $x' = \sigma x = \cos^{-1} x$. Let ψ be the continuous map $\sigma \phi \sigma^{-1}$ of X' onto X'. By Theorem 1 of [1], $h(\psi) = h(\phi)$ and so we may work with ψ instead of ϕ . The map ψ is given explicitly by $\psi(x') = S_{\nu}(x')$ where

$$S_{\nu}(x) = \begin{cases} \nu x - k\pi, & k \text{ even,} \\ (k+1)\pi - \nu x, & k \text{ odd,} \end{cases}$$

for $k\pi/v \le x \le (k+1)\pi/v$, $k=0,1,\dots,v-1$. Figure 1 illustrates the case v=3. Now S_1 is just the identity transformation on X' and hence for v=1, $h(\psi)=0$.



For v > 1, we argue as follows. Let $\varepsilon < 1$ and let $\mathfrak{A}_{\varepsilon}$ be the cover of X' consisting of all intervals of length $\leq \varepsilon$ of the type (a,b,), [0,b) or $(a,\pi]$. For such an interval I of length l, $\psi^{-1}I$ is the union of disjoint similar intervals each of length l' where $l/v \leq l' \leq 2l/v$; this is clear from Figure 2. Hence $\psi^{-1}\mathfrak{A}_{\varepsilon} \prec \mathfrak{A}_{\varepsilon/v}$. By properties (1) and (4) of the introduction it follows that $\psi^{-k}\mathfrak{A}_{\varepsilon} \prec \mathfrak{A}_{\varepsilon/v}$ for k=1,2, Hence

$$\mathfrak{A}_{\varepsilon} \vee \psi^{-1} \mathfrak{A}_{\varepsilon} \vee \cdots \vee \psi^{-n} \mathfrak{A}_{\varepsilon} \prec \mathfrak{A}_{\varepsilon} \vee \mathfrak{A}_{\varepsilon/\nu} \vee \cdots \vee \mathfrak{A}_{\varepsilon/\nu^{n}} = \mathfrak{A}_{\varepsilon/\nu^{n}},$$

since $\mathfrak{A}_{\varepsilon/\nu}r \sim \mathfrak{A}_{\varepsilon/\nu}n$ for $0 \le r \le n$. Therefore, by property (3),

$$N(\mathfrak{A}_{\varepsilon} \vee \psi^{-1}\mathfrak{A}_{\varepsilon} \vee \cdots \vee \psi^{-n}\mathfrak{A}_{\varepsilon}) \leq N(\mathfrak{A}_{\varepsilon/v^{n}}) \leq \pi v^{n}/\varepsilon + 1.$$

Therefore $h(\psi, \mathfrak{A}_{\varepsilon}) \leq \log v$. Now the sequence $\{\mathfrak{A}_{1/n}\}$ is shown in [1] to be a refining sequence and so, by property (6), $h(\psi) = \lim_{n \to \infty} h(\psi, \mathfrak{A}_{1/n}) \leq \log v$.

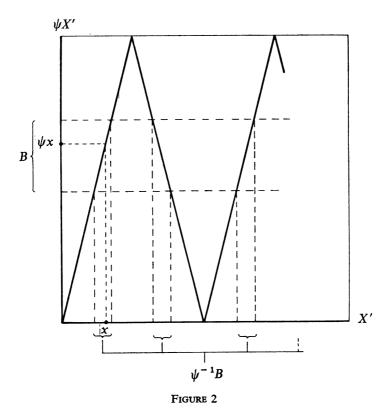
Next we will prove the reverse inequality, $h(\psi) \ge \log \nu$. Let μ be Lebesgue measure on X' and let $g(\mathfrak{B}, x)$ be defined for $x \in X'$ and \mathfrak{B} a cover of X', as in Lemma 1. Suppose now that $\varepsilon < \pi/2\nu$. We note first that if \mathfrak{B} is an open cover whose sets have diameter $< \nu \varepsilon$,

$$(3.1) g(\psi^{-} \mathfrak{B} \vee \mathfrak{A}_{\varepsilon}, x) \geq g(\mathfrak{B}, \psi x),$$

and, for $x \notin S_{\varepsilon}$,

$$(3.2) g(\psi^{-1}\mathfrak{B}\vee\mathfrak{A}_{\varepsilon},x)=vg(\mathfrak{B},\psi x),$$

where S_{ε} is the set of points at distance $\leq \varepsilon$ from some $\pi k/v$ with 0 < k < v. The proof of (3.1) and (3.2) is immediate from Figure 2, where B represents some set of \mathfrak{B} . Inequality (3.1) follows since $\mu(\psi^{-1}B) = \mu(B)$ and $\mu(\psi^{-1}B \cap A) \leq \mu(\psi^{-1}B)$ for any A. For (3.2), the essential point is that for any $B \in \mathfrak{B}, \psi^{-1}B$ consists of exactly v pieces of each measure $\mu(B)/v$ and di-



ameter d(B)/v where d(B) is the diameter of B. If $x \notin S_{\varepsilon}$ and $x \in A \in \mathfrak{A}_{\varepsilon}$ then $A \cap \psi^{-1}B$ contains points of at most one such piece and there is a choice of

 $A \in \mathfrak{A}_{\varepsilon}$ such that $A \cap \psi^{-1}B$ is the whole of one piece. Let $g_n(x)$ denote $g(\mathfrak{A}_{\varepsilon} \vee \psi^{-1}\mathfrak{A}_{\varepsilon} \vee \cdots \vee \psi^{-n}\mathfrak{A}_{\varepsilon}, x)$. Taking $\mathfrak{B} = \mathfrak{A}_{\varepsilon}^{1} \vee \psi^{-1}\mathfrak{A}_{\varepsilon} \vee \cdots \vee \psi^{-n}\mathfrak{A}_{\varepsilon}$ in (3.1) and (3.2), we obtain

$$(3.3) g_{n+1}(x) \ge g_n(\psi x),$$

and, for $x \notin S_{\epsilon}$,

$$(3.4) g_{n+1}(x) = vg_n(\psi x).$$

From (3.3) and (3.4) we have, for $0 \le k \le v - 1$,

$$\int_{k\pi/\nu}^{(k+1)\pi/\nu} g_{n+1}(x) dx \ge \int_{k\pi/\nu+\varepsilon}^{(k+1)\pi/\nu-\varepsilon} v g_n(\psi x) dx + \int_{k\pi/\nu}^{k\pi/\nu+\varepsilon} g_n(\psi x) dx + \int_{(k+1)\pi/\nu-\varepsilon}^{(k+1)\pi/\nu} g_n(\psi x) dx$$

$$= \int_{v\varepsilon}^{\pi-v\varepsilon} g_n(y) dy + v^{-1} \int_0^{v\varepsilon} g_n(y) dy + v^{-1} \int_{\pi-v\varepsilon}^{\pi} g_n(y) dy.$$

Hence

$$(3.5) \int_{0}^{\pi} g_{n+1}(x) dx \ge v \int_{0}^{\pi} g_{n}(y) dy - (v-1) \int_{0}^{v\varepsilon} g_{n}(y) dy - (v-1) \int_{\pi-v\varepsilon}^{\pi} g_{n}(y) dy.$$

Now for $0 < a < \pi/\nu - \varepsilon$, $[0, a] \cap S_{\varepsilon} = \phi$. Hence for $n \ge 1$,

$$\int_0^a g_n(x)dx = \int_0^a v g_{n-1}(\psi x)dx = \int_0^{va} g_{n-1}(y)dy.$$

Iterating this operation we have that if

$$(3.6) 0 < v^{r-1}a < \pi/v - \varepsilon \text{ and } n \ge r \ge 0,$$

then

(3.7)
$$\int_{0}^{a} g_{n}(x) dx = \int_{0}^{av^{r}} g_{n-r}(y) dy.$$

Similarly if v is odd (so that $\psi(\pi) = \pi$) and a, n, r satisfy (3.6) then

(3.8)
$$\int_{\pi-a}^{\pi} g_n(x)dx = \int_{\pi-av^r}^{\pi} g_{n-r}(x)dx.$$

Further (3.8) also holds if v is even and a, n, r satisfy (3.6). In this case $\psi(x)$ is an even function of $x - \pi/2$ and cover $\mathfrak{A}_{\varepsilon}$ is symmetric about $\pi/2$; hence $g_n(x)$ is an even function of $x - \pi/2$ and now the left-hand and right-hand sides or (3.7) and (3.8) are respectively equal.

Let $I_n = \int_0^n g_n(x) dx$ and choose $r_0 = r_0(\varepsilon)$ such that $0 < \varepsilon v^{r_{0-1}} < \pi/\nu - \varepsilon$ and $2v^{r_0}\varepsilon < \pi/\nu$. Let $1 \le s \le r_0$ and $n \ge s - 1$. Then from (3.5),

(3.9)
$$I_{n+1} \ge vI_n - (v-1) \int_0^{v\varepsilon} g_n(x)dx - (v-1) \int_{\pi-v\varepsilon}^{\pi} g_n(x)dx,$$

$$= vI_n - (v-1) \int_0^{v\varepsilon} g_{n-s+1}(y)dy - (v-1) \int_{\pi-v\varepsilon}^{\pi} g_{n-s+1}(y)dy,$$

from (3.7) and (3.8) with $a = v\varepsilon$ and r = s - 1. By definition of r_0 , $v^s\varepsilon < \pi - v^s\varepsilon$, and clearly $g_n(x) > 0$ for all $0 \le x \le \pi$. Hence from (3.9),

$$I_{n+1} > \nu I_n - (\nu - 1)I_{n-s+1}$$

for $1 \le s \le r_0$ and $n \ge s - 1$. Let $\lambda(r)$ be defined as in Lemma 2. Then

$$h(\psi, \mathfrak{A}_{\varepsilon}) = \log \left(\lim_{n \to \infty} N^{1/n} (\mathfrak{A}_{\varepsilon} \vee \psi^{-1} \mathfrak{A}_{\varepsilon} \vee \cdots \vee \psi^{-n+1} \mathfrak{A}_{\varepsilon}) \right)$$

$$\geq \log \left(\liminf_{n \to \infty} I_{n-1}^{1/n} \right), \text{ by Lemma 1,}$$

$$\geq \log \lambda(r_0), \text{ by Lemma 2.}$$

Letting $\varepsilon \to 0$ we may choose $r_0(\varepsilon)$ so that $r_0 \to \infty$ and hence $h(\psi) \ge \sup_{\varepsilon} h(\psi, \mathfrak{A}_{\varepsilon})$ $\ge \log \nu$ since $\lim_{r \to \infty} \lambda(r_0) = \nu$. This concludes the proof of the theorem.

REFERENCES

1. R. L. Adler, A. G. Konheim and M. H. McAndrew, *Topological entropy*, Trans. Amer. Math. Soc. 114 (1965), 309-319.

International Business Machines Corporation, Yorktown Heights, New York